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The elastic coherent scattering intensity for a polymer solution at an arbitrary concentration has been 
calculated, We introduce an approximate model of contacts between many chains which is a 
generalization of the well known Zimm single contact model. The results are consistent with the 
predictions of the random phase approximation 2~ and can be considered as a direct application of the 
theory of Ornstein and Zernike s. It is shown that the effect of higher order contacts between chains 
simply reduces to a redefining of an apparent second virial coefficient which would be a function of 
concentration only. The model is applied to a mixture of deuterated and ordinary homopolymers and the 
results are not affected by the polydispersity. 

(Keywords: polymer solution; light scattering; small-angle neutron scattering; thermodynamics; 
concentration effects) 

I N T R O D U C T I O N  

The single contact approximation 
In a classic paper t, Zimm calculated the scattering 

intensity for a solution of homopolymers at low concen- 
tration c using the single contact approximation between 
different chains. He obtained the following result: 

I(q) = KocM[P(q) -  2A2Mcp2(q)] (1) 

where l(q) is the scattering intensity, q the magnitude of 
the wave vector i.e. q = (4n/2) sin(0/2). 2 is the wavelength 
of the incident radiation, and 0, the scattering angle, c is 
the total monomer concentration in weight fraction, M is 
the polymer molecular weight, A2 the second virial 
coefficient. Ko is a constant that characterizes both the 
apparatus and the type of radiation (light or neutrons). 
P(q) is the normalized single chain form factor which is 
defined by the relation: 

n2e(q) = g(q) = (exp(i. q_. _R~I)) 
j t 

(2) 

g(q) and P(q) differ by the constant normalization factor 
n 2, only. n is the number of monomers per chain and _R jl 
represents the vector distance between monomer j and 
monomer I on the same chain. 

To interpret the data, one usually uses the reciprocal 
form of equation (I) which can be obtained by assuming 
2A2McP(q) ~. 1 : 

Koc = 1 
+2A2c (3) 

l(q) MP(q) 

This form is used by most workers when trying to 
interpret scattering data over a wide range of concen- 
trations. It has been shown to be rigourous by Edwards 2 
and Jannink and de Gennes 3 when the meanfield approxi- 
mation is valid i.e. in concentrated solutions. In the semi- 
dilute case it is well known that meanfield theory does not 
apply and that critical exponents have to be used. Daoud 
et al. 4 assume that the form of equation (3) is still valid ifa 
renormalization argument, replacing the term 2A2c by a 
more correct expression, is used. One can obtain such an 
expression by using the result of des Cloizeaux showing 
that the osmotic pressure n is proportional to c 9/*. We 
shall come back to this problem later. 

Here, we consider a concentration model along the 
lines of these ideas, and generalize it to the cases of a 
mixture and a copolymer solution in a forthcoming paper. 
Let us recall that the scattering intensity I(q) is defined by: 

N N n n 

l ( q ) = K ~  ~ 2 (exp(iq'_R,B,)) (4) 
~t lJ jEat lE~ 

where K =Kom2/NA, m being the molecular weight of a 
monomer and NA Avogadro's number. _R,pt is the vector 
distance between monomer j  of chain ot and monomer I of 
chain ft. N is the number of chains per unit volume in the 
solution. Separating the intramolecular from the inter- 
molecular terms, equation (4) becomes: 

r - ' l (q )=  Ng(q) + N  2 ~. ~ (exp(iq_'_Rj#2)) 
h 12 

(5) 

where 1 and 2 refer to any pair of chains. The symbol 
( . . - )  represents the ensemble average with respect to the 
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equilibrium distribution which, in the case of equation (5), 
can be explicitly written as follows: 

P 
(exp(iq_'_Rjlt2)> = ~d3RM2 W(_Rj, t,)exp(iq._Rj,,,) 

where W(_._Rj,~,) represents the probability distribution of 
the vectordistance _Rj0 ,. Following Zimm, one writes this 
quantity as the l~roduct of intrachain distributions 
W,(1) W,(2) and an interaction term exp(-  Ut 2/kpT), where 
(1) and (2) are symbols for the internal coordinates of 
chains 1 and 2, U~ 2 is the potential of interaction between 
1 and 2 and kpT is the temperature in units of the 
Boltzman constant k~. 

W(_Rj~,) = Ws(1)Ws(2) exp(-  U12/kpT) (7a) 

Furthermore, one assumes that the energy U~2 is the sum 
of the pair of interaction energies between all monomers 
and that these are of short range: 

exp(- U~21k~T)= 1 - ~  ~ vu,,=6(R,,.,) (7b) 
/~1 V2 

where v.,~= is the interaction strength, or the excluded 
volume for a pair of monomers #1 and v2 and 6 is the 
Dirac delta function. The minus sign in front of the 
interaction parameter v is introduced to insure that it has 
a positive value when it corresponds to a repulsion. One 
notes that the second term in the right-hand side of 
equation (5) is different from zero only when the pair (1)(2) 
interacts, namely, when there is at least one contact 
between them. 

SCATTERING INTENSITY USING MANY 
CHAIN MODELS 

Model for a chain of single contacts 
Consider the case of a single contact as illustrated by 

Figure 1. If, in equation (6) we express_Rjd = as a sum_Rt, ul + 
R . ,  + R, ~, and assume that these 3 vector components 
- - P * ,  2 - -  2 2  

are independent, we obtain after summation over all 
possible contact points, the following expression: 

(exp(iq_.Rj,,,))- E (exp(iq_._Rj,.,)) 
/ /1  V2 

× (exp(iq.R~,,2))(exp(iq.R,=t=)) (8) 

Combining this and equation (5), and letting v,1,2= v, 
yields: 

K - 11(q) = Ng(q, c ) -  vN292(q, c) (9) 

Jl { 12 

I.~l . . . . . . . . . .  v2 

2 

Figure 1 Single contact representation. Vertical lines represent 
chains (1) and (2) and the broken horizontal line the contact./'1 
and/2 are the scattering points, #1 and v2 the contact points 

Figure 2 
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Figure 3 Chain of single contacts 

Using the standard notation A2 = VNA/2m 2, M = nm, and 
c=Nnm/NA, equation (9) can he written in the known 
form: 

(KcM)- i l(q) = p(q, c ) -  2A2Mcp2(q, c) (10) 

This is a classical Zimm result (see equation (1)) which 
shows that the angular distribution of the scattered 
intensity depends only on the single chain form factor. 

Another type of interaction is illustrated in Figure 2, 
where, instead of having a direct contact, the pair (1)(2) 
interacts via a third chain (3). The situation in Figure 2 
leads to a term proportional to N 3 or C 3 since 3 different 
chains are involved. Using a similar procedure as in the 
single contact limit, namely Rjll= = Rj tk l  -Jt- Rklk ,  J t-Rk,p,-Jt - 
_Rfp + Rp,t,, assuming that the monomer concentration is 
un~orm in the solution, and that the vector components 
of _Rj,~, are independent, we obtain a sixth order sum- 
mation. The averages over the distributions of vectors 
_Rj,k,, _Rk,¢, and Rp.t,, combined with the double summation 
over the appropriate indices leads to a factor gZ(q,c), 
whereas the averages over the distributions of vectors g,,k' 
and B.,., lead to a factor i? as explained in the previous 
case. Therefore, it becomes clear that the contributing 
term from Figure 2 takes the form: 

v2N2g3(q,c) (1 la) 

One may generalize this procedure to the case illustrated 
in Figure 3 and involving a total of p + 1 chains. It is easy 
to verify that the term corresponding to this type of figure 
is of the form: 

(__ v)pNp+ I g p +  1 (1 lb) 

We shall drop the explicit (q, c) dependence of P and g to 
ease the notation. Collecting these results, we can obtain 
l(q) as follows: 

K - t I (q)  = N g -  vN2g 2 + v2NZ9 3 . . . .  ( -  v)=N'+tg "+1 + " "  
(12) 
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If we assume that vNg < 1, this series can be summed and 
we obtain: 

K- ' l (q )=  Ng Nn2p(q,c) 
1 +vNg 1 +vNn2P(q,c) (13a) 

and in the reciprocal form, we have: 

1 
KI - 1 (q) = Iv/q.--n2~'q, c) ÷ v (13b) 

As we have pointed out earlier, this result has already been 
obtained by various authors 2-¢ using more or less similar 
arguments. If we consider the reciprocal form given by 
equation (13b) and use the standard notation defined 
earlier, again we obtain equation (3). However, one must 
keep in mind that the validity of equation (3) is subject to 
the condition that vNn2p=2A2McP is very small 
compared with 1. Hence, although we have assumed 
vNg=2A2McF< 1 in order to sum the infinite series, we 
shall demonstrate that the result in equation (13) is in fact 
valid even when 2A2Mc is much larger than 1. Further- 
more, by assuming that any pair of chains do not have 
more than one direct contact, we have neglected a large 
number of configurations in which chains interact at more 
than one point in space. We shall assume, in what follows, 
that these types of configurations modify only the internal 
structure of the chains and keep the structure of our 
equation unchanged. This is equivalent to a renormaliza- 
tion of the form of P(q) as a function of concentration. 
Therefore, we shall assume that our equation is correct if 
we replace P(q) by P(q, c). 

Model for a chain of higher order contacts 
In this section we present a generalization of the 

previous model which accounts for contacts of higher 
order. The simplest example corresponds to the case in 
which 3 chains have one segment at the same location in 
space (see Figure 4). The case of Figure 4 can be 
considered as the limit of the situation illustrated by 
Figure 2 in which we let _Rk, p, =0. Hence, the contribution 
of Figure 4 is given by: 

N 2 g  2 (nNv a ) (14) 

where v a is the interaction parameter corresponding to a 
triple contact; note that, in general, 13351) 2 since the 
probability of a triple contact is different from the product 
of probabilities of double contacts involving 3 chains two 
by two. The factor Nn comes from the summation over all 
possible chain segments s. As a generalization of this 
procedure, one can immediately write the term corre- 
sponding to a contact of order (v + 2) by drawing v lines 
between (1) and (2) in Figure 4: 

Figure 4 

kl 

12 

. . . . . . .  L '  
~r  . . . . . .  ~2 

3 2 

Third order contact representation 
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n I contacts of order 3 

I 

..... etC 
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(p+ I) pricipol chains 

Figure 5 Chain of higher order contacts. Heavy lines are the 
principal molecules making the chain of contacts from (1) to (2). 
Light lines represent the chains which contribute to a contact of 
order v+ 2. There are n,. contacts involving (v+ 2) molecules, 
v=0, 1,2 . . . .  

(-- 1)V+lN2g2(nNfvv+ 2 

where v~+2 is the interaction parameter for a contact of 
order v + 2. 

N2g 2 ~ (-nN)Vvv+2=N2g2F(nN) (15) 
v 

where F(nN) is given by: 

F(nN) = v -  Nnv a + N2n2v4 . . . .  (16) 

and since nN is proportional to the concentration c, we 
shall use the notation 

r(nN) = v(c) 

Let us generalize this analysis, first to the case of Figure 2 
where the pair (1)-(2) interacts via another chain (3). The 
introduction of higher order contacts between (1)-(3) and 
(3)-(2), and more precisely, of order v I +2 between (1)-(3), 
and v2+2 between (3)-(2), comes to drawing v 1 lines 
between (1)-(3), and v2 lines between (3)-(2). This leads to 
the following term: 

Na qSvn +2vv2 +2( = Nn) v' + ~' 

and since vl and v 2 can take any value, we have: 

N3q 3 ~ ~ V~, +2 

Vl v2 

which can be written simply as: 

Nag a v,+:(-Nn) ~ =N3gav2(c) (17) 

Now, we can generalize further this procedure by con- 
sidering the case of an arbitrary number of interacting 
chains (see Figure 5). For the sake of simplicity we 
introduce a new variable X defined by: 

X~+2 = -v¢+2(-Nn) v 
such that 

v(c)= 
v 
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Let us assume that we have (p + 1) principal chains 
making the chain of single contacts which we discussed 
earlier. There are p sites of contacts that can be of an 
arbitrary order. If v additional chains are in contact at the 
same point, we obtain a contact of order v+2. n, 
represents the number of sites corresponding to a contact 
of order v + 2. Clearly, we have 

n,=p (18) 

From combinatorial analysis, we know that there are 
p!(I-In~l) ways of arranging p sites in groups of 

v 

no,nl . . . . .  n,. A given realization will contribute to the 
scattering signal by the expression 

rI 
Np+lgp+lp! v 

I-I n~ ! 
v 

and summing over all possible realizations (i.e. all possible 
values of n, satisfying equation (18)), one obtains: 

I-I X7~.2 
NP+toP+t ~,,p[ ' 

n~ I-I nv [ 
v 

It is easy to verify that this gives: 

NP+Igp+I[~ v Xv+2]P-~-Np+Igp+I[-v(c)]" 

Therefore, the final form for I(q) is obtained as: 

K - ~l(q) = Na[1 - Ngv(c)  + N2a2v2(c) . . . .  ] 

which is Ngv(c )< 1, gives: 

K - l l ( q ) =  N g  
1 + v(c)Ng 

or equivalently, 

(19) 

(20a) 

1 
K I -  ' (q) = -~g + v(c) (20b) 

It is convenient to write this result in the standard form by 
defining an apparent second virial coefficient A2(c): 

A , , V(C)NA 
2tc,J=" 

then equation (20b) becomes: 

(q) = ~ + 2A 2 (c)c K c l  
l 1 

11/11" (20c) 

The present procedure allows the introduction of contacts 
of higher order and leads to an excluded volume 
parameter v(c): 

2m 2 
v(c) = v + vaNn + v4(Nn) 2 . . . .  = A2(c) 

NA 

Hence, it is sufficient to replace v or A2 in the formalism of 

the chains with single contacts by the concentration 
dependent parameters v(c) or A2(c). This justifies the 
statement of Daoud et al. 4 stating that they renormalize 
the excluded volume as a function of the concentration. 

At zero scattering angle, equation (20c) gives: 

KcI  - t (0) = M - 1 + 2A 2 (c)c (21) 

However, we know that I(o) is related to the osmotic 
pressure n as follows: 

KcI  - t(o) = (R T ) -  1 (dn/dC)r (22) 

where R is the ideal gas constant. Combining equations 
(21) and (22) yields: 

2A2(c)c = ( R T ) - l ( d n / d C ) r - M  -~ (23) 

and substituting this into equation (20c) yields: 

(24a) 

which relates the scattered intensity to the structure factor 
of the molecules and the thermodynamic behaviour of the 
solution. One notes that by using the classical virial 
expansion, equation (24a) can be written as: 

1 
K c I -  ~ = M P  +2A2C + 3Aac2 +4A4Ca + " "  

+ pApc p- t + . . .  (24b) 

Another interesting problem is finding how the result in 
equation (20a) can be applied to the bulk. If we write 
equation (20a) as: 

K - 11(q) = NO + N2Q 

by identification, we obtain: 

v(c)o 2 Q =  
1 +v(c)Ng 

For an incompressible bulk one has the relation6: 

N Q  = - g  

In order to extrapolate our result to the bulk state, we 
have to assume that v tends to infinity when the solvent 
concentration reaches zero. This problem will be 
discussed later. 

Following the argument of de Gennes 7 on the effect of 
'correlation hole', we note that in the dilute regime this 
effect is represented by - v g  2 whereas in bulk state it is 
given by - g i N .  Therefore, when the concentration 
increases, the range of the correlation hole decreases 
continuously from x /~Rg  in the dilute regime to RO in the 
bulk. 

Relation with the Ornstein-Zernike theory 

In the preceeding section we have selected, among all 
the interaction diagrams, a series of linear chains leading 
to a simple equation. It would be useful to show that the 
contribution of all the other diagrams can be neglected. 
Here we shall assume that this is correct chiefly because 
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the rigorous calculations of Edwards, Jannink and de 
Gennes leads to the same result in the concentrated 
regime. 

Furthermore, it is interesting to show that the Ornstein 
and Zemike s approximation also leads to the same result. 

Let us first summarize their argument, by considering a 
system of N pointlike particles for which the scattering 
intensity given by equation (5) becomes: 

K - 1 I ( q ) = N  +N2(exp( iq ._R,2) )  (25) 

where R12 is the vector distance between the two 
scattering centres 1 and 2. 

In order to evaluate the thermal average in this 
equation, one introduces the pair correlation function 
F(_R12 ) which is related to the more classical a(R) by 
F ( R ) = g ( R ) -  1 (note that F tends to zero as R tends to 
infinity). Equation (25) can be expressed in terms of the 
Fourier transform F(q) as: 

K -  ~I(q) = N +N2F(q )  (26) 

In the case of a dilute solution, F is replaced by the direct 
correlation ~g(_R) which is given by qq(_R)=-vr(_R) or 
qq (q )= -  v, assuming that the interactions are of very 
short distances as compared with the range of q -  t values 
available experimentally. 

Ornstein and Zernike established a relation between 
cg(q) and F(q) by considering the interaction between 
molecules (1) and (2) as being described as the sum of a 
direct correlation ~g between (1) and (2) and an indirect 
correlation going from (1) to (2) via other molecules. In 
order to establish the functional relationship between F 
and cg, Ornstein and Zernike write: 

r(Rt ~) = ~(R~ ~) + N fr(R~ 3 )~¢(R 3~)d3R3 (27) 

This implies that the interaction between (1) and (2) can 
either be direct through cg or indirect by the means of an 
indirect contact between (1) and (3) and a direct contact 
between (3) and (2). The integration is extended to all 
positions of (3) and the corresponding term is multiplied 
by N since there are N molecules in the sytem. In Fourier 
space, equation (27) reads: 

V(q) = C~(q) + N r ( q y ¢ ( q )  (28) 

solving for F(q), one has: 
~¢(q) 

F(q) = (29) 
1 -N~(q)  

and substituting this into equation (26) gives the scattered 
intensity as: 

K I  - ~ (q) = N - ~ - qg(q) (30) 

This equation is similar to equation (13b). 

Now let us extend this method to the problem of 
macromolecules. The direct correlation function between 
two molecules has been calculated already in equations (5) 
and (9) 

~(q) = ~ ~ (exp(iq._Rj,~,)) = - vn4P2(q) (31) 
h 12 

In order to obtain the indirect interaction between (1) and 

Polymer solution scattering: H. Benoit and M. Benmouna 

(2), we shall consider the following diagram (see Figure 6). 
We go from j l  to 12 either directly (one contact pl, q2) or 
indirectly by an indirect interaction between (1) and (3) 
and a direct correlation between (2) and (3). 

This indirect method cg'(q)F(q) (which has been called 
C~(q)F(q) above) is obtained by writing: 

_Rj,~, =Rj,k, +_Rk,m +_R .... +-R,3k , +--Rk,i, (32) 

Now, assuming complete independence between these 
vectors, one can write (exp(iq'_Rj,i,)) as the product of 
five independent quantities and after summation over all 
the indices, one obtains: 

cg'(q)F(q) = - Nn6pav? (33) 

calling ~ the quantity (exp(iq'_Rk,m)). 
Now, if we go from (1) to (2) by one indirect interaction, 

we obtain 
F(q) = ~n4P4(q) (34) 

The functional relationship from Ornstein and Zernicke 
can be written as: 

~n4p 2 = - vngP4[ 1 + N)~n2 P] 

which yields: 
/) 

= 1 +nNn2p(q )  (35) 

Substituting equation (35) into (34) and the resulting form 
of F(q) into: 

K - tI(q) = Nn2P(q)  + N2F(q) (36) 

one obtains the scattered intensity I(q) as: 

Nn2P(q) 
K - 'I(q) = 1 + Nn2p(q) (37) 

This is the same result as in equation (20a) but, this time 
without making any assumption on the value of 
Nn2vP(q) (in fact since an intensity is always positive, we 
must have Nn2vP(q)> -1) .  

Application to a mixture of  differently labelled 
homopolymers 

It would be of some interest to test the results of these 
calculations against experimental values. First of all, one 
must verify that 1(q) is a function of q through the single 
chain form factor P only. The easiest method of achieving 

Jl 

kl 

_Pl 

:la 

*a 

_qa 

Figure 6 Diagram illustrating the application of the 
Ornstein-Zernike theory to polymers 
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this is to use neutron scattering on a mixture of deuterated 
and ordinary polymers. If all polymers are identical, one 
goes back to the previous discussion and uses, for 
example, equation (24a). However, if a small fraction, xN, 
of deuterated chains is added to a mixture of solvent and 
(1 - x ) N  ordinary polymers of the same molecular weight, 
by letting x---,0, one obtains P(q,c). Then, comparing this 
result with the total scattering intensity I(q), one may be 
able to test the validity of our model and, if it is correct, 
one can determine (dn/OC)rwithout having to extrapolate 
the scattering curve to angle zero. Since it seems 
interesting experimentally to study mixtures ofdeuterated 
and protonated homopolymers, let us calculate the 
scattered intensity for an arbitrary value of x. We start 
with the general, and classical form: 

I (q) = (a - s)2SDD + ( b -  s)2SHH + 2(a -- S) ( b -  s)SHD (38) 

where a, b and s are the coherent scattering lengths 
corresponding to the deuterated and protonated 
monomers, and to the solvent, respectively. SDD, San and 
SnD are the scattering intensities due to the deuterated and 
hydrogenated polymers, and the cross terms, respectively, 
i.e., 

N N n  m 

So=E E E E (exp(iq._Rj=,=)); (a, f l=H, D) 
= # j t 

These quantities can be immediately obtained from our 
model as follows: 

x2N2g2v(c) 
SDD = xNa (39) 

l + v(c)Ng 

where x is the fraction of deuterated chains x =ND/N. 
One notes that the quantity v(c)Ng appears in the 
denominator and not xNgv(c) because the chains of 
interaction between a pair of deuterated chains can be 
either of type D or H, knowing that they have the same 
thermodynamic properties. We also have: 

and 

(1 -- x)2N2g2V(c) 
SHH =(1 - x ) N g -  (40) 

1 + v(c)Ng 

x(1 - x)N2g2v(c) 
SHD = Srm = (41) 

1 + o(c)Ng 

Combining equations (25) to (28) and rearranging the 
terms, we obtain: 

t "  "1  

I(q) = x(1 - x)(a - b)2Ng + d 2 INg- .I 1 +v(c)Ng_J (42) L 

where d is the average scattering length 

d= ( a -  s)x + ( b -  s) (I - x) (43) 

The result from equation (29) is an application of the 
theory of Akcasu et alfl, and Benoit et al. 6 to the model 
developed here. Letting d=  0 in equation (29) yields as 
expected: 

I (q) = ( a -  b)2x(1 - x)Ng (44) 

which shows that I(q) becomes independent of the 
intermolecular interaction. Usually, in neutron scattering 
experiments, one chooses a solvent such that b=s, in 
which case equation (42) gives: 

I(q)= (a-- s)2[xNg x2N2g2v(c)] i ~ J  (45) 

In the reciprocal form, this equation can be written as: 

1 v(c) 
(a - s)2I- 1 (q) = _ _  4 

xNg l+(1-x)v(c)Ng 
(46) 

It is worth noting here that the single contact model 
would give, in this case: 

I (q) = (a - s )2[xS  g - x2 N2 g2v(c )] 

and by using the reciprocal approximation, one obtains: 

( a -  s)2I- 1 ( q ) _ _ ~ +  v(c) (47) 

where the second term in the right-hand-side (rhs) is 
independent of q. If we assume that both H and D 
monomers have the same molecular weight, we can write 
equation (46) using more practical symbols as: 

Mkxc l 2A2(c)Mxc 
- - = - - 4  (48) 

l(q) P l+2A2(c)M(1-x )cP 

If the latter assumption is found to be too crude, one has 
to use equation (46) with the required modifications. The 
limiting form of this equation at q = 0, has been derived by 
Alexander and Pincus a° using self consistent field argu- 
ments. One notes that the second term on the rhs of this 
equation depends on q for x < 1, as opposed to equation 
(47). Hence, the interesting feature of equation (48) is its 
strong dependence on x which implies that the apparent 
P(q) may be very different from its true value. In order to 
make this point more explicit, we have made several 
Zimm plots of equation (48) representing the variation of 
KMcDH(q) as a function of q2Rg2 +2A2MCD. In these 
plots we assume that the molecular weights are the same 
and the form factor is independent of the concentration 
and is given by the Debye function. 

Figure 7 represents an ordinary Zimm plot which is 
obtained by using the single contact and the reciprocal 
approximation (see equation (47)). This Figure is plotted 
for the sake of comparison with Figures 8, 9 and 10 which 

IO 
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2 

A C= 

2 4 6 8 IO 12 14 16 18 

~2R# + 2A2Mc D 

Figure 7 Zimm plot for a mixture of deuterated and ordinary, 
otherwise identical homopolymers, using equation (47) (single 
contact with the reciprocal approximation) 
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Figure 8 Zimm plot for the same system using equation (48) 
(chain of single contacts model) and for a concentration CH 
given by 2 A 2 M C  H = 1 
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Figure 9 Similar Zimm plot for a concentration CH eight times 
higher than in the case of Figure 8 (i.e. 2A2MCH=8) 
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Figure 10 Zimm plot for a 50/50 mixture of H and D 
homopolymers (CH = CO) 

are plotted using equation (48). In Figure 8, we kept the 
concentration CH constant (i.e. 2A2MCH = 1) and changed 
CD- This shows a strong distortion of the Zimm plot. 

Figure 9 gives a similar Zimm plot but with a concen- 
tration CH eight times higher (i.e. 2A2MCn=8). We 
observe that the slope of the straight line q = 0  decreases 
which implies that the H-component behaves as a poor 
solvent. 

In Figure 10, we assumed that C D = C  H. Here we 
observe that the concentration dependence quickly 
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reaches a plateau value. An experimentalist who misses 
the initial curvature, may conclude that he is observing a 
theta behaviour. 

In the last three Figures, the angular distribution of the 
intensity is highly distorted, mainly in the lower range of 
qRg and the curves intersect each other. Note that we have 
used the same scale in these Figures to make the 
comparison easier. 

In Figure 11, we have plotted KMCD/I(q) as a function 
of q2Rg2 +x (x=Co/C) using again equation (48) and 
keeping the total concentration c constant (i.e. 
2A2Mc = 6). We observe that the curves corresponding to 
x between 0 and 1 are distorted and may present an 
inflection point. The curves x = 0 and x = 1 representing 
p - t  and P- t+2A2MC,  respectively, can be super- 
imposed by translation. 

Finally, if v is very large (we shall see that this is always 
the case when the solvent volume fraction goes to zero i.e. 
in the bulk limit) equations (46) and (48) become 
independent of v and one arrives at the result already 
obtained by Daoud et al.*: 

l (q) = (a - s)2x(1 - x )Ng 

DISCUSSION 

The calculations presented in this paper can be seen as an 
extension of the classical Ornstein and Zemike (OZ) 
theory to polymer solutions. The final result is very simple 
but it is important to keep in mind the assumptions made 
in its derivation. 

Either using our sets of diagrams, or the OZ theory, we 
disregard a large number of diagrams, particularly those 
for which there are many single contacts on a chain. We 
tried to take this into account by introducing dform factor 
P(q, c) function of c as we did for the excluded volume 
parameter v(c). Only the experiments can tell of this 
procedure is legitimate. By doing so, we did neglect a 
number of efforts that have been made to solve this 
problem and which are well described in Yamakawa's 
book 11. 

We have also assumed a uniform distribution of 
segments in the solution. This assumption is markedly 
incorrect at low concentration i.e. c<c*, c* being the 
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o 2 4 6 8 I0 
qR2+ x 

Figure 11 Zimm plot for the same system but keeping the total 
concentration C = CH+ CD constant (i.e. 2A2Mc=6 ) and changing 
the relative composition of deuterated polymers (x= Co~C) from 0 
to 1. In all cases, we used Debye's function for P(q) which we 
assumed to be independent of the concentration 
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overlap concentration, and therefore our model cannot 
replace any theory which is capable of accounting for the 
non-uniform distribution of the concentration below c*. 
Our model should work better above c* where the density 
fluctuations of monomeric units are much less important. 

Furthermore, it would be interesting to see how v(c) 
varies with the concentration. In the semi-dilute regime, 
one can use the des Cloizeaux 12 law which gives the 
osmotic pressure ~ ,,, C 9/5, and therefore, v ~ c  1/4 varying 
slowly with the concentration. 

In both the lower and higher concentration ranges, this 
power law does not hold. In order to have a model for the 
variation of v(c), we shall use the classical Flory-Huggins 
theory la which gives for the chemical potential of the 
solvent: 

/ ~ - # ° = R T [ I n ( 1 - ~ p 2 ) + t p 2 ( 1 - - ! ) + Z i p  2] (49) 

where ~P2 is the volume fraction of the polymer and Z the 
Flory interaction parameter. Knowing that 
7 rv1=- (#1 -#° ) ,  v I being the molar volume of the 
solvent and using equation (23) and (20b), one obtains: 

2 r l  1 ~O2-'l 
(50) 

where Nt is the total number of solvent molecules and 
monomer units ((Vl/NA)N t = 1, ~01 = 1 - tp2)). In the dilute 
regime ~p2--*0 and we obtain a classical result. In the high 
concentration regime, we see that v(c) goes to infinity as 
expected, in order for the scattered intensity to go to zero. 
It is important to note that in these limits, the value of v(c) 
extracted from equation (50) are correct since at low or 
very high concentrations, all solutions behave like ideal 
solutions. This legitimates also the procedure we adopted 
in extrapolating to the bulk state, in the case of a mixture 
of deuterated and ordinary polymers. 

Since we have slightly different results from those of 
Daoud et al. 4, it would be interesting to re-examine the 
scattering laws in the intermediate range of q and for 
various concentration regimes. Assuming the chain to be 
Gaussian, we have in the intermediate q-range, 
e - l (q )=(q2R2 /12)+½ so that I(q) becomes 

1 1 [q2R2 1~ 

which can be put in the Lorentzian form 
I(q) ~ 1/(q 2 + ~-2) with a correlation length ~ defined by: 

2 6 12Nn2F ~ X)+~_~] 
(51) 

-2 is the sum of three terms. The first one can be 
neglected when n (the molecular weight) is large. The 
second term gives, in the Gaussian approximation ~ - 2 .,. c 
but disappears in a theta solvent. The third term has the 
form const. (c~p2/~Pl) which is proportional to c 2 when 
~P2 < 1 but goes to infinity as tp2 approaches unity in the 
limit of a pure polymer. Therefore, the situation is rather 
complex at high concentration and in a theta solvent. In 
order to have ~-2 proportional to c (Edwards law2), one 

has to assume that the excluded volume is large since, if it 
is zero, ~-2 is proportional to ctp2/~pl which means that if 
(p2 <~ 1, ~,'~C -1. 

In the semi-dilute regime, one can use the des Cloizeaux 
law (n .,.c9/4) and find v..~c 1/4 and nothing can be added 
to what is said in ref. (4). 

All these discussions have been presented having in 
mind the case of flexible linear chains. In fact the only 
assumption which made this theory possible is the 
unidimensionality of the scattering objects. All we have 
said applies as well to branched polymers, and rigid 
polymers. In fact, in the latter case, the model should work 
better because it is not possible to have multiple contacts 
between two chains, but one has to neglect the angular 
correlations. This can be done only in dilute solution. At 
higher concentrations, it is clear that the angular cor- 
relations are important and give rise to mesomorphic 
phases 14. 

One of the difficulties in our results is that we cannot 
introduce the effect of molecular weight on A2(c) and we 
have no argument to renormalize A2 as a function of M. 
This brings an advantage, however, if we want to apply 
this theory to polydisperse systems. By a quick inspection 
of the structure of the formulae, one notes that the only 
thing to do is to replace the quantity Nn2p by the 
expression ~i  Ntn2pi(q, c) where N l is the number of 
molecules having n i segments and P~ as a form factor. 

In conclusion, by summing an infinite series or by using 
the method of Ornstein and Zernike, we obtained a 
general equation which gives the scattered intensity of a 
polymer solution at any concentration. As was pointed 
out earlier, our method reproduces the exact results both 
in the concentrated regime (Edwards, Jannink and de 
Gennes) and in the dilute regime (Zimm). It is very 
important to check from an experimental point of view if 
the renormalization of the excluded volume as suggested 
in ref. 4 is sufficient to make it useful in the intermediate 
range of concentrations. However, the main advantage of 
this procedure is its direct and immediate generalization 
to mixtures of homopolymers and copolymers which we 
shall discuss in a forthcoming paper 1 s. 
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